NCERT Class 10 Maths Solutions Chapter - 1 Real Numbers

Q.2  Show that any positive odd integer is of the form 6q + 1, or 6q + 3, or 6q + 5, where q is some integer.

Solution

Let a be any odd positive integer we need to prove that a is of the form 6q + 1 , or  6q + 3 , or 6q + 5 , where q is some integer.

Since a is an integer consider b = 6 another integer applying Euclid's division lemma  we get 
a = 6q + r  for some integer q  0, and r = 0, 1, 2, 3, 4, 5  since 
 r < 6.
Therefore, a = 6q or 6q + 1 or 6q + 2 or 6q + 3 or 6q + 4 or 6q + 5
However since a is odd so a cannot take the values 6q, 6q+2 and 6q+4
(since all these are divisible by 2) 

Also, 6q + 1 = 2 x 3q + 1 = 2k1 + 1, where k1 is a positive integer
6q + 3 = (6q + 2) + 1 = 2 (3q + 1) + 1 = 2k2 + 1, where k2 is an integer
6q + 5 = (6q + 4) + 1 = 2 (3q + 2) + 1 = 2k3 +  1, where k3 is an integer
Clearly, 6q + 1, 6q + 3, 6q + 5 are of the form 2k + 1, where k is an integer.
Therefore, 6q + 1, 6q + 3, 6q + 5 are odd numbers. 

Therefore, any odd integer can be expressed is of the form 
6q + 1, or 6q + 3, or 6q + 5 where q is some integer

Concept Insight:  In order to solve such problems  Euclid's division lemma is applied to two integers a and b the integer b must be taken in accordance with what is to be proved, for example here the integer b was taken 6 because a must  be of the form 6q + 1, 6q + 3, 6q + 5.

Basic definition of even and odd numbers and the fact that addition and , multiplication of  integers is always an integer are applicable here.


Post a Comment